A Combinatorial Construction of High Order Algorithms for Finding Polynomial Roots of Known Multiplicity
نویسندگان
چکیده
We construct a family of high order iteration functions for finding polynomial roots of a known multiplicity s. This family is a generalization of a fundamental family of high order algorithms for simple roots that dates back to Schröder’s 1870 paper. It starts with the well known variant of Newton’s method B̂2(x) = x − s · p(x)/p′(x) and the multiple root counterpart of Halley’s method derived by Hansen and Patrick. Our approach demonstrates the relevance and power of algebraic combinatorial techniques in studying rational root-finding iteration functions.
منابع مشابه
Solving Degenerate Sparse Polynomial Systems Faster
Consider a system F of n polynomial equations in n unknowns, over an algebraically closed eld of arbitrary characteristic. We present a fast method to nd a point in every irreducible component of the zero set Z of F. Our techniques allow us to sharpen and lower prior complexity bounds for this problem by fully taking into account the monomial term structure. As a corollary of our development we...
متن کاملSe p 19 98 SOLVING DEGENERATE SPARSE POLYNOMIAL SYSTEMS FASTER
Consider a system F of n polynomial equations in n unknowns, over an algebraically closed field of arbitrary characteristic. We present a fast method to find a point in every irreducible component of the zero set Z of F . Our techniques allow us to sharpen and lower prior complexity bounds for this problem by fully taking into account the monomial term structure. As a corollary of our developme...
متن کامل98 Solving Degenerate Sparse Polynomial Systems Faster
Consider a system F of n polynomial equations in n unknowns, over an algebraically closed field of arbitrary characteristic. We present a fast method to find a point in every irreducible component of the zero set Z of F . Our techniques allow us to sharpen and lower prior complexity bounds for this problem by fully taking into account the monomial term structure. As a corollary of our developme...
متن کاملFinding the Shortest Hamiltonian Path for Iranian Cities Using Hybrid Simulated Annealing and Ant Colony Optimization Algorithms
The traveling salesman problem is a well-known and important combinatorial optimization problem. The goal of this problem is to find the shortest Hamiltonian path that visits each city in a given list exactly once and then returns to the starting city. In this paper, for the first time, the shortest Hamiltonian path is achieved for 1071 Iranian cities. For solving this large-scale problem, tw...
متن کاملFifth-Order Iterative Method for Solving Multiple Roots of the Highest Multiplicity of Nonlinear Equation
A three-step iterative method with fifth-order convergence as a new modification of Newton’s method was presented. This method is for finding multiple roots of nonlinear equation with unknown multiplicity m whose multiplicity m is the highest multiplicity. Its order of convergence is analyzed and proved. Results for some numerical examples show the efficiency of the new method.
متن کامل